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Abstract In this paper we analyse the relevant role played
by the third-order correlation terms in the contracted Schrö-
dinger equation (CSE) methodology. The quality of the
approximations used when evaluating these terms influence
significantly both the convergence of the iterative procedure
and the accuracy of the final energy value obtained. But where
the performance of these approximating algorithms for the
third-order terms becomes crucial is in the study of those
states whose description, at first-order, needs more than one
Slater determinant. This is still an unsolved problem, which is
analysed here. Two possible ways for approximately solving
this problem are outlined here.

Keywords Contracted Schrödinger equation · Reduced
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1 Introduction

It is both an honour and a personal obligation to render
homage and affectionate souvenir to Professor Serafín Fraga
by dedicating this paper to him. He was not only a highly
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stimulating teacher and scientific mentor but he also became
a dear friend whose memory is unforgettable.

An ample review on the contracted Schrödinger equation
(CSE) theory has recently been carried out [1]. This is a redu-
ced density matrix (RDM) theory which can now be consi-
dered competitive in the study of the electronic structure of
medium size systems. The aim of this paper is to consider how
to improve the performance of the approximating algorithm
for describing the three-body effects that play an important
role in this theory. The second-order Anti-hermitian Contrac-
ted Schrödinger Equation (2-ACSE), which has just been
reported by Mazziotti [2], has emphasized this point, since
this equation does not depend—as the complete second-order
CSE (2-CSE) does—on the fourth-order RDM (4-RDM).
What is more, in the case of states whose description, at
first order of accuracy involves more than one determinant,
the approximating algorithm presently used for describing
the three-body correlation effects is not adequate. This same
problem has been very recently pointed out by Herbert [3].
That is, high-order cumulants do not vanish when the state
is far from well described by a single electron configuration.
We will therefore focus here our attention on these three-
body correlation terms. In the following section, the notation
and necessary theoretical background is described. Then, in
Sect. 3, the 2-ACSE is tested by calculating the ground state
of a set of four and six-electron systems. Each of these sys-
tems is calculated with three different types of algorithms
for approximating the 3-RDM. The results obtained, which
are very good, show to what extent the convergence of the
equation is extremely sensitive to the kind of algorithm used
for approximating the three-body correlation terms. Through
the analysis of a simple example it will be shown why the
3-RDM approximation which works well for the ground state
fails when two Slater determinants are equally dominant in
the state considered. In the final section,we describe two
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possible approaches which are being investigated for approxi-
mating the 3-RDM. Both these approaches are based on the
decomposition of the 3-RDM and on the structure and pro-
perties of the Correlation Matrices (CM).

2 Theoretical background

The 2-RDM is the matrix obtained when contracting the
N-electron density matrix into the two-electron space. In
second quantization the 2-RDM elements are defined as:

2Di j;ml = 1

2
〈�|a†

i a†
j alam |�〉 (1)

where the ket |�〉 is the state under study; the indices i, j, m, l
denote the spin-orbitals which are elements of the one-
electron finite basis set built from K orthonormal orbitals
and the two spin-funtions α, β.

The electronic energy of a system can be written as

E = tr(0H2D) (2)

where 0H is a matrix formed by the one-electron integrals
ε and by the two-electron integrals 〈i j |kl〉 (this latter in
the Condon and Shortley notation: 〈i j |kl〉 = 〈ϕi (1)ϕ j (2)

|r−1
12 |ϕk(1)ϕl(2)〉).

0Hi j;kl =
(

εikδ jl + ε jlδik

N − 1
+ 〈i j |kl〉

)
(3)

The dependence of energy on the 2-RDM is at the origin
of the great interest in this matrix which began with Husimi
[4], Mayer [5] and Löwdin [6]. After these seminal works,
the search to obtain directly the 2-RDM, without a previous
knowledge of the wave function has constituted an ample
field of research [7–13]. It was soon realized that, in the
variational determination of the Energy of the ground-state
of an electronic system, an unknown set of constraints should
be imposed upon the 2-RDM; otherwise unrealistic results
were obtained. These variational constraints constitute what
Coleman [14] defined as the N-representability conditions
whose determination has centered the efforts during several
decades and which cannot yet be considered a closed ques-
tion [15]. In 1976 Cohen and Frishberg [16] and Nakatsuji
[17] reported an integro-differential hierarchy equation for
the 2-RDM. Moreover, Nakatsuji [17] showed that, when the
RDMs solving this equation are N-representable, the solution
of this equation coincides with that of the Schrödinger Equa-
tion. That is, there is a one-to-one correspondence between
the solutions of these two equations. However, this integro-
differential equation is indeterminate since it depends not
only on the 2-RDM but also on the 3- and 4-RDMs. In
view of this indeterminacy, the research along this line was

interrupted for nearly ten years. In 1983 Valdemoro reported
a matrix contracting mapping [18] which was later applied to
the matrix representation of the Schrödinger equation [19–
21]. The generic form of the resulting equation, which was
termed as p-order Contracted Schrödinger Equation
(p-CSE), is given by:

〈�|Ĥa†
i1

a†
i2

· · · a†
i p

a jp · · · a j2 a j1 |�〉
= Ep!pDi1i2...i p; j1 j2.... jp (4)

where Ĥ is the N-body Hamiltonian operator, E is the energy
and � its corresponding eigen-state.

When replacing in (4), for p = 2, the Hamiltonian by its
second quantized expression

Ĥ = 1

2

∑
i, j,k,l

0Hi j;kla
†
i a†

j alak (5)

one obtains:
1

2

∑
i, j;k,l

0Hi j;kl〈�|a†
i a†

j alaka†
r a†

s aqap|�〉 = E2! 2Drs;pq

(6)

Once the string of fermion operators is transformed into its
normal form the equation becomes

2! E2Drs;pq = 2! (0H2D
)

rs;pq

+3!
∑
i, j,k

(0Hi j;kr
3Di js;pqk + 0Hi j;sk

3Di jr;pqk
)

+1

2
4!

∑
i, j,k,l

0Hi j;kl
4Di jrs;klpq (7)

As can be seen, this matrix equation, which is equivalent
to the integro-differential one reported by Cohen and Frish-
berg and by Nakatsuji, depends not only on the 2-RDM but
also on the 3- and 4-RDMs and is therefore indeterminate
[22]. The way to lift the indeterminacy of this equation was
to approximate the 3- and 4-RDMs as functions of the 1- and
2-RDMs replacing these matrices in the 2-CSE, and then
solve the equation iteratively. This was first carried out in
1994 by Colmenero and Valdemoro [23,24]. The iterative
solution of the 2-CSE, when combined with a purification
algorithm for the second-order Reduced Dentsity Matrix
(2-RDM) and with a convergence enhancement device, has
recently yielded extremely accurate results. For instance, the
accuracy of the calculation of the linear BeH2 and of the Li2
ground state was of 10−5 Hartrees [15,25]. Very recently,
Mazziotti [2] reported an important advance in the 2-CSE
methodology, in which the 2-RDM is directly calculated from
the anti-hermitian part of the 2-CSE. The second-order anti-
hermitian CSE (2-ACSE)

〈�|[a†
r a†

s aqap, Ĥ ]−|�〉 = 0 (8)
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which is equivalent to the second-order hypervirial relation
[19,24], only involves the 2- and 3-RDM. It has been sol-
ved by means of a system of differential equations resulting
from examination of infinitesimal unitary transformations
applied to a trial wavefunction, which produces a sequence of
2-RDMs that minimize the energy until the 2-ACSE is satis-
fied. This last development stresses the relevance of the role
played by the 3-RDM.

3 The 3-RDM approximating algorithms

In the first part of this section the different 3-RDM approxi-
mations used by two of the groups working in the field will
be schematically described. The attention will be centered
on the term of the algorithm describing the three-body cor-
relation effects, which can be identified with the third-order
cumulant in a moment expansion of the 3-RDM. Then, a set
of results obtained by solving the 2-ACSE with the different
approximations will be reported.

3.1 Approximations currently used

The algorithm used until now for approximating the 3-RDM
[1] is:

3! 3Di jk;pqr = −2A1(
1D1

i;pD1
j;qDk;r )

+A22!
(

1Di;p
2D jk;qr + 1D j;q 2Dik;pr

+1Dk;r 2Di j;pq

)
+ 3! 3�i jk;pqr

(9)

where A1 antisymmetrizes the column indices of the three
1-RDM involved and A2 antisymmetrizes the column index
of the 1-RDM with the column indices of the 2-RDM. The last
term 3� represents the approximation error. This algorithm,
in a spin-free basis of representation, was initally proposed
by Colmenero et al. [26], and several works have been since
then dedicated to its study [27–43]. Mazziotti [30,31,35,36]
has identified the 3� as Kubo’s [44] third-order cumulant in a
moment expansion of the 3-RDM; and Nakatsuji and Yasuda
[27,29] base their approximation in the three-body approxi-
mation of the Green-function perturbative treatment. This
3� term, which is antisymmetric with respect to the permu-
tation of the row and of the column indices, accounts for the
three-body correlation effects; and, since at each iteration one
obtains a 2-RDM and the corresponding 1-RDM, this is the
term which must be approximated. Mazziotti [35] solves the
problem by working with natural orbitals, which decouples
the algorithm obtained when contracting the 4-RDM algo-
rithm; and he then solves an homogenous system of equations
to obtain the 3-RDM. This latter method involves at each ite-
ration a basis set transformation of all the matrices which

is followed by the resolution of an equation system. Since
this is a rather expensive approach, it is not being considered
here. Nakatsuji and Yasuda [27,29] approximate this term
as:

3�i jr;pqk ≈ A
∑
l,t

2�i j;ql(
1D(H F)

l;t −1 D̄(H F)
l;t )2 2�tr;qk (10)

where A is an antisymmetrizer, 2� is the second-order cumu-
lant and 1D(H F) and 1D̄(H F) are the 1-RDM and the hole
1-RDM corresponding to a Hartree-Fock reference calcula-
tion. This approximation will be called NY in what follows.

Initially, Valdemoro and co-workers considered 3� as an
error which was approximately corrected by imposing the
positivity N-representability condition on the 4-RDM, nor-
malising this matrix and then contracting it into the three
electron space [24,28]. This approximation will be denoted
here as V. Later on, Valdemoro, Tel and Pérez-Romero analy-
sed the performance of the NY approximation in the singlet
ground-state of several systems and realised that the 3�’s
elements which had a not negligible value were those of the
3�

ααβ
and 3�

αββ
spin-blocks which involved frontier orbi-

tals. As a result of this analysis an approximation based on
the role played by the frontier electrons was proposed [38].

In order to define the frontier orbitals in this context we
consider the configuration which is expected to dominate in
the state under study. Thus the set of frontier spin-orbitals is
formed by the highest-occupied spin-orbital (o) and lowest-
empty spin-orbital (e) for each molecular symmetry. In the
singlet ground states which have been studied until now, it
was clear (by comparison with FCI results) that only the two
following types of 3�

ααβ
elements had non negligible values

and should be estimated: 3�oeō;eoō and 3�eoē;oeē, where the
bar over the index indicates that the spin-orbital has a beta
spin (for the corresponding 3�αββ elements the α spin plays
the role played by β). The approximations used for this type
of elements are:

3! 3�o1e1ō2;e2o3ō4 = −2!2! 2�o1ō2;e2 x̄
2�e1 x̄;o3ō4 (11)

3! 3�e1o1ē2;o2e3ē4 = +2!2! 2�e1ē2;o2 ȳ
2�o1 ȳ;e3ē4 (12)

where x̄ and ȳ are the lowest empty and highest occupied
orbitals respectively. Since the 3� is antisymmetric with res-
pect to the permutation of the indices, an antisymmetrizer
should be, strictly speaking, inserted into these two formulae;
but, in practice, when comparing the results with the corres-
ponding full configuration interaction values, this extra care
does not seem to be necessary. This approximation will be
denoted in what follows as VTP.
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Table 1 Energy of the
isoelectronic series of the
Beryllium atom

Approx Iteration Energy Iteration Energy

Be E(HF) = −14.5723689 E(FCI) = −14.5871556

V 1 −14.5726074 8,000 −14.5871708

VTP 1 −14.5726074 8,000 −14.5871526

NY 1 −14.5726074 8,000 −14.5871181

B+ E(HF) = −24.2338257 E(FCI) = −24.2484047

V 1 −24.2342607 3,000 −24.2484605

VTP 1 −24.2342607 3,000 −24.2484467

NY 1 −24.2342607 3,000 −24.2484181

C+2 E(HF) = −36.4007173 E(FCI) = −36.4148907

V 1 −36.4013687 2,500 −36.4150750

VTP 1 −36.4013687 2,500 −36.4150626

NY 1 −36.4013687 2,500 −36.4150376

N+3 E(HF) = −51.0698086 E(FCI) = −51.0837830

V 1 −51.0707216 1,500 −51.0840206

VTP 1 −51.0707216 1,500 −51.0840126

NY 1 −51.0707216 1,500 −51.0839956

O+4 E(HF) = −68.2381775 E(FCI) = −68.2519572

V 1 −68.2394022 1,000 −68.2522676

VTP 1 −68.2394022 1,000 −68.2522620

NY 1 −68.2394022 1,000 −68.2522497

3.1.1 Some examples of the performance of these 3�

approximations

As has been mentioned the 2-ACSE is the anti-hermitian
2-CSE very recently reported by Mazziotti, which only
requires the knowledge of the 1-, 2- and 3-RDMs. Here,
Maziotti’s method will be used in order to calculate the isoe-
lectronic series of the Beryllium atom and the BeH2 and Li2
molecules.

The Beryllium isoelectronic series In Table 1 we report
the energy values obtained for the Beryllium isoelectronic
series by solving iteratively the 2-ACSE as described in [2].
The initial and final iterations are reported in each case. The
Hartree-Fock (HF) and full configuration interaction (FCI)
results for these systems are also shown in Table 1. The basis
set used is a double-zeta one. All the energy values obtained
are good, particularly the NY and VTP ones. The root-mean-
square deviation for the 2-RDM was 1.17×10−4 in the ligh-
ter ions and 3.40×10−5 in the Oxigen cation. The error in
positivity of the 2-RDM and of the hole 2-RDM was of the
order of 10−6. These results confirm the good performance
both of the 2-ACSE and of the NY and VTP three-body error
estimations.

The ground state of the Li2 and BeH2 molecules A mini-
mal basis set formed by eight spin-orbitals was used in the

calculation of the Li2 molecule and the bond length was of
5.50 a0.

For the linear BeH2 molecule, the basis set was formed
by the Hartree-Fock orbitals built out of the Slater orbitals
1s, 2s, and 2p, centered at the Beryllium atom; and by a 1s
orbital of exponent 1.1, centered at each Hydrogen atom. The
Be–H bond length was of 2.54 a0.

The results obtained for BeH2 and Li2 are given in Table 2.
As can be seen, although both the NY and VTP approxi-
mations of 3� yield accurate values of the energy for these
molecules, the VTP shows a slight improvement upon the
NY approximation. When analysing the values of the
3� elements for the ground-state of the Li2 molecule, a
very striking feature appears: Nearly all the elements are
equal to zero, both in the FCI and in the approximated
calculations. In Table 3 we report the values of
those elements having an absolute value larger than 10−4

in the different calculations. Note that the values corres-
ponding to elements involving the frontier-orbitals 3 and
4 are rather large (since the basis set in the Li2 calcula-
tion is very small these two orbitals are the only frontier
ones).

As can be seen, in Li2, the VTP approximates the 3� in a
significantly better way than the NY algorithm. It should be
stressed that a good estimate of the 3� elements is crucial for
the convergence of the iterative procedure of the ACSE—

123



Theor Chem Account (2007) 118:503–509 507

Table 2 Energy of the BeH2 and Li2 molecules

Approx Iteration Energy Iteration Energy

Li2 E(HF) = −14.8323167 E(FCI) = −14.8470867

V 1 −14.8324460 444 −14.8495368

VTP 1 −14.8324460 1,100 −14.8469393

NY 1 −14.8324460 890 −14.8476953

BeH2 E(HF) = −15.7345453 E(FCI) = −15.7640945

V 1 −15.7363481 150 −15.7651872

VTP 1 −15.7363481 150 −15.7642117

NY 1 −15.7363481 150 −15.7643454

Table 3 Most significant values of the 3� for the ground state of the
Li2 molecule

Element FCI NY VTP

141̄;343̄ 2.675 2.232 2.676

143̄;343̄ −1.838 −1.199 −2.203

144̄;344̄ 1.846 1.206 1.846

242̄;343̄ 2.689 2.244 2.689

341̄;343̄ −1.838 −1.199 −2.203

343̄;343̄ 632.584 413.234 757.769

344̄;344̄ −632.586 −413.233 −757.769

The values appear multiplied by 104. The bar over a number orbital
implies that the spin function is β
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Fig. 1 Li2: 2-ACSE results for different aproximations of the 3-RDM

as can be seen in Fig. 1, which clearly shows that the NY
approximation is not good enough.

4 The problem of the states whose first-order
description involves more than one Slater
determinant

Since the solution of the 2-CSE must be the 2-RDM and the
energy of an eigen-state of the Hamiltonian, irrespective of

the structure of its wave-function, the reason for the treat-
ment of those states whose first-order description involves
more than one determinant not being successful must be due
to the approximating algorithms used. When considering the
algorithms for constructing the 3-RDM in terms of the 1- and
2-RDM one realizes, in view of our knowledge of the role
played by the frontier orbitals, why these algorithms are not
suitable approximations in the study of this type of states.
Indeed, let us consider the singlet excited state whose first-
order spin-adapted description is 1√

2

(|11̄22̄34̄〉 + |11̄22̄43̄〉).
Clearly, the frontier spin-orbitals (without considering the
different symmetry shells) are 3, 3̄, 4 and 4̄. But there is not a
clear criterion to decide which are the o-frontier orbitals and
which are the e-frontier orbitals since, according to the Slater
determinant that is being considered, the role played by the
orbital switches between o- and e-. This is the reason why
neither the NY nor the VTP approximations work. This is
particularly obvious in the NY algorithm, since the 1-RDM
and hole 1-RDM elements corresponding to these orbitals are
identical and therefore cancel each other. It implies that the
above mentioned 3� elements, which have probably a non-
negligible value, will nevertheless have a zero value when
approximated with this algorithm.

4.1 An alternative approach

The correlation matrices (CM) have very interesting proper-
ties [1,15,32,33,37–40,43,45–50], which suggests looking
for an alternative approach to derive an approximation for
the 3-RDM in algorithms which use these matrices instead
of the cumulant ones. Therefore, in what follows the attention
is focused on the functional dependence of the RDM upon
the corresponding CM. Let us therefore begin by recalling
the structure of the 2- and 3-CMs, respectively.

(2)Ci j;ml = 〈�|a†
i am P̂a†

j al |�〉 ≡
∑

�′ �=�

1D��′
i;m

1D�′�
j;l (13)

and

(3;1,1,1)Cikm; jln = 〈�|a†
i a j P̂a†

k al P̂a†
man|�〉 (14)

where P̂ is a projector defined as:

P̂ = 1̂ − |�〉〈�| (15)

and the 1, 1, 1 labels on the upper left side of C indicate
that the operators appearing between two succesive P̂’s are
one-electron substitution operators.

When one decomposes the 3-RDM and the projector P̂ is
applied one obtains:
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3! 3Dikm; jln = −2! 2Dik; jnδml + 2! 2Dik;lnδ jm

+ 2! 2Dik; jl
1Dm;n − δk j

(2)Cim;ln
+ 1Di; j

(2)Ckm;ln + (3;1,1,1)Cikm; jln (16)

It should be stressed that this formula is analytically exact,
that is, it is not an approximation of the 3-RDM. In fact,
the expressions relating the 2- and 3-CM to the second- and
third-order errors 2� and 3�, respectively are easily derived
by comparing Eq. (9) with Eq. (16).

Since the 2-RDM is given at each iteration by the 2-CSE
(or by the 2-ACSE), the unknown is of course the (3;1,1,1)C.
The question is, therefore, whether the 3-CM can be approxi-
mated with sufficient accuracy. Thus, an alternative approach
is to evaluate the 3-RDM according to Eq. (16) and approxi-
mate the 3-CM by exploiting the properties of these matrices.
This line of research is being initiated at present. There are
several strategies that may lead to an adequate approximation
of the relevant 3-CM elements but here we will just discuss
two of the working hypotheses:

1. The main role of the 3-CM is to couple two 2-body effets
while the description of 3-electron virtual excitations
would play a secondary role
It seems that the first question that should be investiga-
ted is why the VTP approximation works well. Since
2�αβ = (2)Cαβ , the product of two such 2-CM elements,
which is at the basis of the VTP algorithm, was transfor-
med by using Eq. (15) in order to see whether this product
was equivalent to an expression which would involve a
3-CM element. This, however, is not the case. Thus, all
the 3- and 4-CM’s elements appearing during the trans-
formation cancelled out at the end of the development.
This seems to indicate that the VTP (and the NY one too)
approximate the correlation effects by only involving
two-electron excitations. In fact, this was also apparent
in a previous calculation of the BeH2 [37] where, while
the 3� elements corresponding to two excitations were
rather well approximated with the VTP and NY algo-
rithms, it was not so for those elements which corres-
ponded to three-electron excitations. This suggests that
the role played by the 3-CM may be indirectly taken
into account. Now, the 3-CM terms, which do not contri-
bute under contraction of relation (16) to the 2-RDM, do
influence an important N-representability condition: the
antisymmetry of the 3-RDM with respect to a permu-
tation of the row or column indices. In view of this, an
indirect way of taking into account the contribution of the
3-CM terms to the 3-RDM may be to omit the 3-CM term
when constructing the 3-RDM according to Eq. (16) and
subsequently antisymmetrize this matrix. If this approxi-
mation were adequate it should be so, irrespective of the

structure of the state considered. The code for testing this
approximation is now being programmed.

2. Decomposing a 4-CM
Another idea which is being prospected consists in
decomposing a 4-CM in terms of lower-order terms.
The basic hypothesis is to suppose that a 4-CM element
should have a smaller value (and therefore might be
neglected) than the third-order term obtained by decom-
posing it.
Let us assume that the element one wishes to evaluate is
(3;1,1,1)Ci pr; jqs , then we start with

(4;1,1,1,1)Cli pr;l jqs

≡ 〈�|a†
l al P̂a†

i a j P̂a†
paq P̂a†

r as |�〉 (17)

and shift the pair of operators a†
l al towards the end of

the string. This, although slightly laborious can be done
in a straightforward manner by using Eq. (15) and the
anticommuting fermion algebra.
As a result one obtains:

(4;1,1,1,1)Cli pr;l jqs −(4;1,1,1,1) Ci prl; jqsl

≡ (
δli − δl j + δlp − δlq + δlr − δls

)(3;1,1,1) Ci pr; jqs

+ (
δlp − δlq + δlr − δls

)
(2)Cpr;qs

1Di; j

+(2)Clr;ls 1Di; j
1Dp;q − 1Di; j

1Dr;s (2)Cpl;ql

−(2)Cil; jl
(2)C pr;qs + (2)Ci p; jq

(2)Clr;ls + A (18)

where

A =(3;1,1,1) C1
prl;qslDi; j −(3;1,1,1) C1

i pl; jqlDr;s (19)

is a third-order term which will now be approximated. In
order to approximate it we will proceed in a similar way
by decomposing

(4;1,1,1,1)Clnml;ltvl ≡ 〈�|a†
l al P̂a†

nat P̂a†
mav P̂a†

l al |�〉
(20)

Here again, the pair of operators a†
l al are pushed towards

the end of the operators string. As a result, one obtains:

(4;1,1,1,1)Clnml;ltvl

≡ (−2nl + 1+ δln − δlt + δlm − δlv)
(3;1,1,1) Cmnl;tvl

+ 1D(2)
n;tCml;vl (−2nl + 1 + δlm − δlv)

+
(

1D1
n;t Dm;v +(2) Cnm;tv

)
(nl − n2

l )

− (2)Cnl;tl (2)Cml;vl (21)

where nl is the occupation number of spin-orbital l. If
the spin-orbital l could be chosen independently of the
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element one wishes to study, this approximation would
yield good results since, by chosing the occupation num-
ber nl to be either close to one or to zero, the corres-
ponding 4-CM element could be expected to be small.
However, because of the δ terms which multiply the
3-CM elements, the l orbital is not arbitrary and, the-
refore, the crucial open question is whether the 4-CM
elements involving frontier electrons are small enough
and can thus be neglected.

These two approaches for approximating the 3-CM effects
in the excited and transition states which cannot be studied
with the currently used algorithms are now being codified
and hopefully may extend the field of application of the
2-ACSE.
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